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Abstract—In this paper, we extend the finite-element method
into hierarchical higher order bases and the inexact Helmholtz
decomposition. With the help of hierarchical basis functions, the
approach can adopt well into the version adaptive process. On
the other hand, the inexact Helmholtz decomposition enhances
the stability of the finite-element procedure when the operating
frequency is low or the element size is very small compared to
the wavelength. This approach can also enhance the version
adaptive mesh refinement process since the process may cause
very small elements near a singular region. To accomplish the
inexact Helmholtz decomposition for the edge elements, the lowest
order curl conforming basis functions, the tree–cotree splitting,
is utilized, and the general procedure is presented. As a result,
a combination of hierarchical higher order basis functions with
the inexact Helmholtz decomposition can improve the efficiency
and the stability of the adaptive mesh refinement process. The
accuracy and stability of the proposed approach are also discussed
through numerical examples.

Index Terms—Electromagnetic propagation, finite-element
method (FEM), higher order basis functions, tree–cotree splitting.

I. INTRODUCTION

THE analysis of two-dimensional waveguiding structures
is of significant importance in microwave engineering. It

provides impedance information of the transmission lines, the
modal configuration of energy propagation, and it is becoming
more popular that the two-dimensional eigenanalysis is an inte-
gral part of studying real life three-dimensional electromagnetic
problems. Various frequency- and time-domain numerical elec-
tromagnetic techniques have been presented [1]–[3]; however,
it is well accepted that, among them, the finite-element method
(FEM) is the most suitable and versatile in handling arbitrary
material properties and geometric shapes.

One common approach to improve the accuracy of the FEM
analysis is to use higher order basis functions, which can be
classified into two families, the interpolatory and hierarchical.
Using interpolatory basis functions [4], the order of the bases
needs to be uniform within the computational domain. On the
other hand, hierarchical basis functions [5], [6] allow the use
of different orders within the same computational domain. This
property of the hierarchical elements can be utilized to itera-
tively increase the order of the basis functions ( refinement)
in the regions where an appropriate error estimate is large. Im-
proved accuracy can be also achieved by subdividing a set of
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elements into another subset of smaller ones of the same order.
This process is known as refinement. An appropriate combi-
nation of the above approaches leads to one of the most powerful
FEM technologies, the adaptive mesh refinement. Therefore,
to analyze two-dimensional waveguiding structures, we imple-
ment the FEM with higher order bases in a hierarchical way.

However, the popular lowest order curl conforming basis
functions are the edge elements [7], and they will suffer
low-frequency instability. If the operating frequency becomes
very low, the finite-element procedure with the edge elements
may converge slowly or break down in iterative solvers. The
instability may also occur when the element size is extremely
small compared to the wavelength, which can be viewed
as a low-frequency situation. To overcome this deficiency,
tree–cotree splitting [8] is proposed and implemented. With
this technique, the basis vectors are decomposed into two
nonoverlapping subspaces, gradient and rotational-like spaces.
In solving the vector wave equation, it is of paramount impor-
tance to explicitly form basis functions that are pure gradients
[5], [6]. Via tree–cotree splitting, our basis functions, are
either pure gradient or their complements, rotational-like basis
functions. Since the “rotational-like” basis functions are not
exactly divergence free, we thus termed the decomposition an
“inexact” Helmholtz decomposition. By employing the inexact
Helmholtz decomposition, the FEM procedure can be more
reliable at low frequencies or in the adaptive process.

In this paper, the FEM is enhanced by the hierarchical higher
order basis functions and the tree–cotree splitting. Also, the per-
formance of the higher order basis functions are tested through
the numerical examples in Section VIII by performing and
refinements, and the stability of the tree–cotree splitting is ver-
ified.

II. FORMULATION

In this study, we employ an formulation from [9] and
[10]. For completeness purposes, parts of the formulation are
repeated here. The formulation is chosen in this paper
since the resultant matrix equation can be better conditioned
than the one obtained by - or -field formulation [11]. How-
ever, instead of utilizing an anisotropic medium, as in [9] and
[10], an isotropic case is assumed. For time–harmonic fields in
an isotropic medium, Maxwell’s equations become

(1)
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where and are the relative permittivity and permeability,
respectively. For a waveguiding structure, which is uniform in
the -direction, the electric and magnetic fields can be expressed
as

(2)

where is a point vector in the waveguide and is the propaga-
tion constant. The fields can be rewritten in terms of the vector
and scalar potentials and as

(3)

where denotes the speed of light. By choosing as
the gauge condition and applying the splitting ,
Maxwell’s equation (1) can be rearranged as

(4)

(5)

(6)

where is the free-space wavenumber. In the above system
of equations, only (4) and (6) are linearly independent, there-
fore, they are sufficient to describe the boundary value problem
(BVP). To ensure a unique solution of the BVP, a set of boundary
conditions must be imposed on and . In this study, the sim-
plest cases of a perfect electric conductor (PEC) and perfect
magnetic conductor (PMC) will be considered as

on PEC (7)

on PMC (8)

where is the normal vector to the boundary.

III. FINITE-ELEMENT PROCEDURE

Using (4) and (6) and the boundary conditions (7) and (8), the
following bilinear form is obtained:

(9)

where denotes the domain of interest, and are the trans-
verse components of the testing and trial vector potentials in
two-dimensional space, and and are the longitudinal com-
ponents of the testing and trial scalar potentials. To obtain (9),

the standard Galerkin’s method and Green’s theorems are ap-
plied [9], [10]. In the FEM, each state variable is spanned by a
set of basis functions. Therefore, the trial function in a sub-do-
main can be expressed as a linear combination of the basis func-
tions. If and are the vector and scalar basis functions,
each trial function will be written as

(10)

where and denote the numbers of the vector and scalar
basis functions, respectively. Since the testing space is the same
as the trial space, each testing function can also be expressed as a
linear combination of the basis functions. Finally, a generalized
eigenmatrix equation is obtained as

(11)
where and are the coefficient vectors for the vector and
scalar basis functions, respectively, and the sub-matrices used
in (11) are given by

(12)

IV. BASIS FUNCTIONS

In the FEM, the edge elements are widely used as a set of
basis functions [7]. However, to obtain a highly accurate result,
higher order basis functions may be desired. Furthermore, in
performing the version adaptive process, hierarchical basis
functions will be necessary because they allow each element to
have a different order. Therefore, we employ a set of hierarchical
higher order basis functions, which is shown in Table I. The
vector basis functions of the second and higher order are sep-
arated into gradient and rotational-like functions. Table I shows
only the rotational-like part of the vector basis functions. The
gradient part of the vector basis functions is obtained from the
gradients of the second-order and higher order scalar basis func-
tions, which are shown in this same table. The basis functions
in Table I are derived mostly following the procedure in [5], ex-
cept that the rotational-like functions are slightly modified to
make the basis functions satisfy the Nedelec criteria [12]. The
basis functions in Table I may not be the optimal set for the fi-
nite-element bases, and the optimization described in [5] and
[6] is not carried out for simplicity. However, they will provide,
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TABLE I
HIERARCHICAL VECTOR AND SCALAR BASIS FUNCTIONS

at least, the general performance that any set of hierarchical
higher order basis functions should produce. One advantage of
the basis functions in Table I is that the inexact Helmholtz de-
composition is already fulfilled for the higher order vector basis
functions. However, the edge elements, the first-order vector
basis functions, are not yet decomposed, and a possible way is
presented in Section V.

V. TREE–COTREE SPLITTING

A major disadvantage of the edge elements is that they may
be unreliable for low frequencies [11]. Furthermore, the same
deficiency can take place when the element size becomes much
smaller than the wavelength. This situation can be crucial in
performing the version adaptive process. In the -adaptive
process, the element size can be extremely small near singular-
ities. To remedy this problem, we employ the tree–cotree split-
ting [13] to accomplish the inexact Helmholtz decomposition
for the edge elements.

A minimum spanning tree in a finite-element mesh can be
found by applying a graph theory since a mesh of finite ele-
ments is also a graph. The edges on the tree are termed tree
edges, while the remaining ones are called cotree edges. Before
describing the algorithm for the tree–cotree splitting, it would
be convenient to define the following notations:

th node;
edge formed by nodes and ;
Set of all the nodes that are connected to node ;

, boundary condition of node , and edge , re-
spectively;
ID number of node ;
Mark flag of node .

In using the inexact Helmholtz splitting, all the nodes on the per-
fect conductor need to be held at the same potential, therefore,
they will have the same number. Therefore, it would be neces-
sary to start by establishing the algorithm for node numbering.

Algorithm 1: Node numbering

1) For every node , set

2) set
3) Find a node , such that

a. and
b.

Fig. 1. Node numbering of a two-dimensional mesh graph.

4) Does such a exist? If NO goto step
11

5) set
6) add node to set F
7) Is set F empty? If YES goto step 3
8) set , and remove

from F
9) For every node , if

and then

a. set , and
b. add to F

10) goto step 7
11) Is ? If NO goto step 13
12) Pick a node such that

, and set ,
increment numG by 1

13) for every node , if
, set

and increment numG by 1

A sample result of applying Algorithm 1 is shown in Fig. 1.
The PEC, which is marked as 1, is assumed to be grounded.
After numbering nodes, the next step will be marking the tree
and cotree edges.

Algorithm 2: Tree–cotree splitting of mesh
graph

1) for every edge , reset

2) for every node , reset

3) for every node , if add
to F

4) Is F empty? If YES then END the proce-
dure

5) set and remove from
F

6) for every node if and
then

a. , and
b. , and
c. Add to F

7) goto step 4
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Fig. 2. Tree–cotree splitting of mesh graph.

A sample result using Algorithm 2 is shown in Fig. 2. The
bold-lined edges are the tree edges. In Fig. 2, the number of
tree edges is ten, which is exactly the same as the number of
unknowns that we numbered in Algorithm 1. Namely, at this
moment, we can replace the edge-element basis functions on
tree edges with the pure gradient basis functions on the vertex
nodes. Note that, in applying Algorithm 2, we have lumped all
the physical nodes on the same PEC into one node.

After finding a tree, the edge elements on the tree edges are
replaced by , where is the bary-centric function on node .
In doing so, the degrees of freedom for tree edges are removed
and a new set of unknowns assigned on vertices is added. Since

is a continuous function, the tangential field continuity for
is maintained. With this modification, the vector basis func-

tions are completely separated into two groups: gradient func-
tions and rotational-like functions. As a result, the tree–cotree
splitting and (11) result in the following generalized eigenma-
trix equation:

(13)

where and are the same operations with and
, but with only the rotational-like functions, and

and are the coefficient vectors for the gradient and rota-
tional-like functions, respectively. The other sub-matrices are

(14)

(15)

(16)

(17)

where and are the gradient and rotational-like func-
tions, respectively. From the fact that are the gradients of

scalar basis functions, it can be observed that most of the en-
tries of and are the same. In particular, when the
problem domain contains exactly one PEC body, the matrices

and are exactly the same. The same situation
holds for the matrices , , and .

To obtain the dominant modes in a waveguide, we need to
find the smallest eigenvalues of (13). However, the Lanczos al-
gorithm, which is employed in this study, computes the largest
eigenvalues much faster than the smallest ones in most cases
[10]. Thus, for better convergence, (13) needs to be modified so
that the dominant modes are represented by the largest eigen-
values from the modified equation, as described in [10].

VI. CONSTRUCTION OF MATRICES

For the efficient construction of (13), we employ a so-called
universal matrix approach, which was introduced in [14]. In [5]
and [15], explicit ways of building the universal matrices for
tetrahedral elements of arbitrary order and triangular elements
for the lowest order are shown, respectively. A similar procedure
can be applied for triangular elements of arbitrary order. Fol-
lowing the steps in [5], the universal matrices for triangular ele-
ments of arbitrary order can also be obtained. Any vector basis
function can be expressed as

(18)

where is a scalar function composed of and .
In (18), has been removed by . Therefore,

(19)

where is the area of the triangle, and can be written as

(20)

Also, by taking the curl of (18),

(21)

Therefore,

(22)

where is

(23)
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Moreover, it can be shown that

(24)

Therefore, (22) can be more simply written as

(25)

For the scalar basis functions, it can be shown that

(26)

where is found using a similar procedure as and .
It can be easily seen that the three expressions (19), (25), and
(26) are sufficient for constructing the matrix (13). Once the
universal matrices are obtained, the right-hand side of (26) can
be used for local matrix construction, which is obviously less
expensive and more accurate than numerical integration. Also,
it can be easily observed that this approach is beneficial, espe-
cially for higher order basis functions.

VII. CONSTRAINT EQUATION

It is indicated in [10] that, while solving (13), nonphysical
modes, trivial solutions, may occur. Although they can be easily
identified, their occurrence may degrade numerical efficiency
and stability of the eigensolver. Therefore, it is desirable to elim-
inate those nonphysical modes. To constrain the nonphysical
modes, a constrained Lanczos algorithm is introduced in [10],
in which a constraint equation is used to suppress the trivial so-
lutions completely. To set up the constraint equation, we start
by identifying the trivial solution space

(27)

where is a gradient operator scaled by . Note that
any vector in produces a nonphysical mode. By the
tree–cotree splitting, can be separated into a gradient and a
rotational-like parts, and (27) becomes

(28)

where is a gradient vector function, and is a rota-
tional-like vector function. In the FEM, can be written as a
matrix form , and it can be easily found from the fact that the
gradient vector basis functions are the gradients of scalar basis
functions. Especially when the number of PEC bodies is one,
the following equation can be derived from (27):

(29)

where is the identity matrix. If the number of PECs is more
than one, a number of zero row vectors need to be added in
(29), and one zero column vector for the non-PEC case. Using
the orthonomality of the physical (nonspurious) modes in the

waveguide, the constraint equation can be obtained. Equation
(11) can be written as

(30)

where and are the eigenpair. Similarly, another equa-
tion can be obtained for the eigenpair as

(31)

Postmultiplying (30) by and (31) by , and then subtracting
leads to

(32)

where the symmetry of and was utilized. From (32), it
follows that

(33)

where is the Kronecker delta function. Expanding (33) leads
to

(34)

Taking into account that is separated into gradient and rota-
tional-like functions by the tree–cotree splitting

(35)

(34) is rearranged as

(36)
Since a physical solution needs to be orthogonal to any trivial
solution , the constraint equation for the physical
solution can be obtained from (28) and (36) as

(37)

If (37) is imposed in the Lanczos algorithm, as shown in [10],
the nonphysical modes are constrained since they do not satisfy
(37).

VIII. NUMERICAL RESULTS

To test the basis functions applied in this study, and re-
finements using uniform meshes and uniform order of the basis
functions were carried out. Also, the stability of the tree–cotree
splitting was investigated by reducing the size of the elements
in each refinement step.

A. Convergence Study

To check the accuracy of the higher order basis functions,
a simple rectangular waveguide was analyzed. Although our
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Fig. 3. h-version refinement to obtain the TE mode in a rectangular
waveguide.

FEM implementation is capable of analyzing arbitrarily shaped
waveguides, we simulated the simplest structure in order to
easily compare our approach to the exact solutions. The first
example is a convergence test for various orders. For this test,
each element was divided into four elements at a step, and the
errors of the propagation constants were obtained at each step.
For example, the propagation constants were calculated with
two elements at the first step, and then with eight elements,
32 elements, and so on. By discretizing the geometry finer,
the refinement behavior can be observed. 1.5 m 1 m
air-filled rectangular waveguide was used in this test, and
the frequency was set to 200 MHz. The error is defined by

, where is the square of the exact
propagation constant obtained from the analytical solution and

is the square of the approximate propagation constant
obtained from our approach. Since the fields are smooth in this
problem, the convergence rates can be predicted theoretically
by

(38)

where and are the exact and numerical values of
the -field, respectively, is the typical element size, is the
number of unknowns, and is the order of the basis functions
[16]. Equation (38) is generally valid provided that the solution

meets smoothness requirements and . For this numer-
ical experiment, as well as all the following ones, an 800-MHz
CPU and 256-MB RAM LINUX PC was used. The errors of
the numerical solutions for the mode, the first dominant
mode, are plotted in Fig. 3, and the convergence behavior is
as expected by (38). In this situation, raising the order of the
basis functions while keeping the number of elements the same,
which is the refinement, would be a better choice. The con-
vergence characteristics of the refinement are shown in Fig. 4.
As the order of the basis functions is increased, the rate of con-
vergence generally gets higher. Compared to the convergence
rate of the refinement, that of the refinement is much higher
in this problem. Also, it is shown in Fig. 5 that much less time
would be taken with the higher order basis functions to obtain
a certain degree of accuracy. Therefore, at least in this specific
problem, performing refinement would be a better choice.

Fig. 4. p-version refinement to obtain the TE mode in a rectangular
waveguide.

Fig. 5. h refinement versus CPU time of a rectangular waveguide.

However, if it is considered that the fields are smooth inside
the simple rectangular waveguide, to carry out the same exper-
iments for the geometry containing singularities would be nec-
essary. The cross section of a shielded microstrip line, shown
in Fig. 6, contains singularities inside, and it may cause inaccu-
racy in the numerical analysis. In this problem, it is shown in
[17] that for the region near the singular point

(39)

where is the distance from the singular point. Since
cannot be well expressed by the interpolation polynomials, the
numerical error for the electric field will be

(40)

Therefore,

(41)

It can be shown that the asymptotic convergence rate for sin-
gular solutions depends only on the intensity of the singularity
and not on the order of the polynomial interpolation [16]. It can
be noticed from (41) that the convergence rates for the refine-
ment will not be enhanced by raising the order of the basis func-
tions. In this example, the numerical experiment was carried out
for the frequency of 1 GHz. Since there is no analytical solution
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Fig. 6. Geometry of a shielded microstrip line.

Fig. 7. h-version refinement to obtain a quasi-TEM mode in a shielded
microstrip line.

Fig. 8. p-version refinement to obtain a quasi-TEM mode in a shielded
microstrip line.

available for the shielded microstrip line, we obtained the propa-
gation constant of the quasi-TEM mode with fourth-order basis
functions and 4096 elements, and used the result as the reference
value. The and refinements were carried out in the same way
as the previous waveguide problem, and the results are given in
Figs. 7 and 8. The rate of convergence is much lower for both the

and versions than for the rectangular waveguide problem.
The slopes in Fig. 7 are 0.48 0.58, and they are in agree-
ment with the expected result from (41). The convergence rates
of the refinement in Fig. 8 are almost constant and twice those
of the refinement, which is consistent with the electrostatic
problem [16]. The efficiency of the FEM is slightly enhanced
by the higher order basis functions, as shown in Fig. 9.

A similar example is a partially filled waveguide problem, as
shown in Fig. 10. The singularities for the electric field occur at
the corners of the dielectric region, and the order of the singu-

Fig. 9. h refinement versus CPU time of a shielded microstrip line.

Fig. 10. Geometry of a partially filled waveguide.

Fig. 11. h-version refinement to obtain the first mode in a partially filled
waveguide.

larity is found from [17, eq. (4.66)]. Thus, the electric field near
a corner varies as

(42)

Following the procedure of (40) and (41), one can obtain

(43)

For the numerical experiments, the frequency was set to 70
MHz, and Fig. 11–13 are the results of the experiments. Those
results are in agreement with the ones predicted by (43). Since
the singularity of this example is weaker, the convergence rates
for all cases are better than those of the shielded microstrip-line
problem. However, the presence of the singularity results in a
uniform convergence rate regardless of the order of the basis
functions.

For the problems that include singularity, the accuracy of the
FEM solution is determined by the intensity of the singularity.
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Fig. 12. p-version refinement to obtain the first mode in a partially filled
waveguide.

Fig. 13. h refinement versus CPU time of a partially filled waveguide.

Even the edge elements are affected by the singularity, and ex-
hibit a lower convergence rate than that of a smooth solution.
Although the refinement still performs better than the re-
finement, the convergence rate is still very low. A possible way
to achieve a better convergence rate and efficiency is to utilize

adaptive refinement. Namely, small-sized elements are used
for regions containing singularities and higher order basis func-
tions are used for regions where the fields are smooth. A similar
analysis for electrostatic problems is presented in [16], and it
is shown that a nonuniform refinement combined with higher
order basis functions is able to achieve a much better conver-
gence rate for the problems of singularities.

B. Stability of the Tree–Cotree Splitting

To indicate the advantages of using the tree–cotree splitting
over the conventional edge elements, the geometry of the rectan-
gular waveguide was discretized several times, and the number
of iterations was obtained at each step. The size of each ele-
ment can be extremely small after several steps, and the benefit
of the tree–cotree splitting can be easily seen in this situation.
For this example, 15 cm 10 cm rectangular waveguide was
analyzed and the frequency was set to 10 MHz. In Figs. 14 and
15, the number of iterations for finding the mode in the
Lanczos algorithm is presented. In our Lanczos solver, the itera-
tion stops when the residual is less than 10 . It can be clearly

Fig. 14. Iteration counts for the TE mode in a waveguide by the Lanczos
algorithm—first-order basis functions.

Fig. 15. Iteration counts for the TE mode in a waveguide by the Lanczos
algorithm—third-order basis functions.

seen that the edge elements are affected by the size of the ele-
ment, whereas when the tree–cotree splitting is applied, the con-
vergence behavior is very stable for any size of the elements,
which can be a great advantage in the version of adaptive re-
finement.

IX. CONCLUSIONS

In this paper, a generalized eigenmatrix equation in terms
of the higher order basis functions and tree–cotree splitting
have been derived. Also, an efficient matrix assembly and
the constraint equation that prevents the occurrence of the
spurious modes have been discussed. The numerical results
have verified the advantages of the higher order basis func-
tions and tree–cotree splitting. However, the accuracy and
efficiency of the higher order basis functions were dependent
on the problem. For nonsmooth solutions, uniform refinements
converged slowly to the exact solutions regardless of the basis
order, thus, the adaptive refinement technique was suggested.
It was also verified that the tree–cotree splitting might enhance
the stability of the finite-element procedure.
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